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Deformable registration of images obtained from different modalities remains a challenging task in med-
ical image analysis. This paper addresses this important problem and proposes a modality independent
neighbourhood descriptor (MIND) for both linear and deformable multi-modal registration. Based on the
similarity of small image patches within one image, it aims to extract the distinctive structure in a local
neighbourhood, which is preserved across modalities. The descriptor is based on the concept of image
self-similarity, which has been introduced for non-local means filtering for image denoising. It is able
to distinguish between different types of features such as corners, edges and homogeneously textured
regions. MIND is robust to the most considerable differences between modalities: non-functional inten-
sity relations, image noise and non-uniform bias fields. The multi-dimensional descriptor can be effi-
ciently computed in a dense fashion across the whole image and provides point-wise local similarity
across modalities based on the absolute or squared difference between descriptors, making it applicable
for a wide range of transformation models and optimisation algorithms. We use the sum of squared dif-
ferences of the MIND representations of the images as a similarity metric within a symmetric non-para-
metric Gauss–Newton registration framework. In principle, MIND would be applicable to the registration
of arbitrary modalities. In this work, we apply and validate it for the registration of clinical 3D thoracic CT
scans between inhale and exhale as well as the alignment of 3D CT and MRI scans. Experimental results
show the advantages of MIND over state-of-the-art techniques such as conditional mutual information
and entropy images, with respect to clinically annotated landmark locations.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The aim of medical image registration is to find the correct spa-
tial mapping of corresponding anatomical or functional structures
between images. Patient motion, due to different positioning or
breathing level, and pathological changes between scans may
cause non-rigid deformations, which need to be compensated for.
Advances in recent years have resulted in a number of robust
and accurate methods for deformable registration techniques for
scans of the same modality, with registration accuracies close to
the scan resolution (as demonstrated in an evaluation study of lung
registration, Murphy et al., 2011). However, the registration of
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images from different modalities remains a challenging and active
area of research. Alignment of multi-modal images helps to relate
clinically relevant and often complementary information from dif-
ferent scans. For example, it can be used in image guided interven-
tions. Using multi-modal images can also help a clinician to make
use of the complementary information present in different modal-
ities and improve the diagnostic task. One common clinical appli-
cation is the registration of computed tomography (CT) and
magnetic resonance imaging (MRI), as it can combine the good
spatial resolution and dense tissue contrast of a CT with the better
soft tissue contrast of MRI.

In addition to the geometric distortion caused by patient mo-
tion, multi-modal registration also has to be able to deal with
intensity distortions. Due to the different physical phenomena
that are measured by the different modalities, there is no func-
tional relation between the intensity mapping of corresponding
anatomies. This problem can be addressed using geometric
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registration approaches, which aim to match a sparse set of
descriptors, such as scale invariant feature transform (SIFT) (Lowe,
1999) or gradient location and orientation histograms (GLOH) (Mi-
kolajczyk and Schmid, 2005), which are to some extent invariant
to changes of intensity (or illumination) since they rely on image
gradients and local orientations. However, they have not been
successfully applied to multi-modal images, where the intensity
variations are more severe. Voxel-wise intensity based registra-
tion can also be used to align multi-modal images. This requires
the use of a similarity metric derived from the image intensities
that is robust to the non-functional intensity relationship.

Mutual information (MI), first introduced by Maes et al. (1997)
and Viola and Wells (1997), is an information theoretic measure,
which aims to find a statistical intensity relationship across images
and thereby maximises the amount of shared information between
two images. For the rigid alignment of multi-modal images, MI has
been very successful and is widely used (an overview is given in
Pluim et al., 2003). Its application to deformable multi-modal reg-
istration comes with many difficulties, and several weaknesses
have been identified. The main disadvantage is that MI is intrinsi-
cally a global measure and therefore its local estimation is difficult,
which can lead to many false local optima in non-rigid registration.
Moreover, the optimisation of mutual information for non-rigid
registration is computationally complex and converges slower
than more simple intensity metrics, such as sum of squared differ-
ences (SSD), calculated over the intensities directly. Consequently,
a new approach to deformable multi-modal registration has
emerged, which uses a different scalar representation of both
images based on a modality independent local quantity, such as lo-
cal phase, gradient orientation or local entropy (Mellor and Brady,
2005; Haber and Modersitzki, 2006; Wachinger and Navab, 2012).
These approaches benefit from their attractive properties for the
optimisation of the cost function, since the point-wise (squared)
differences can be used to minimise differences between the image
representations. For challenging multi-modal scans it is however
not always possible to find a scalar representation that is suffi-
ciently discriminative.

In this article, we introduce a new concept for deformable multi-
modal registration using a highly discriminative, multi-dimen-
sional image descriptor, called the modality independent neigh-
bourhood descriptor (MIND), which can be efficiently computed
in a dense manner over the images and optimised using SSD. We
make use of the concept of local self-similarity, which has been
exploited in many different areas of image analysis, such as denois-
ing (Buades et al., 2005), super-resolution (Manjon et al., 2008), im-
age retrieval (Hörster and Lienhart, 2008), detection (Shechtman
and Irani, 2007) and segmentation (Coupé et al., 2010). It allows
the formulation of an image descriptor, which is independent of
the particular intensity distribution across two images and still pro-
vides a very good representation of the local shape of an image fea-
ture. It is based on the assumption that even though the intensity
distribution of an anatomical structure may not correspond across
modalities, it is reliable within a local neighbourhood in the same
image. Therefore descriptors based on a simple intensity based
metric, like SSD, can be extracted for each modality separately
and then directly compared across images. The overview of our ap-
proach is schematically shown in Fig. 1. We first extract a dense set
of high-dimensional image descriptors for both images indepen-
dently based on the intensity differences within a search region
around each voxel in the same modality. We embed this in a stan-
dard non-rigid registration framework to optimise the transforma-
tion parameters using a single-modal similarity metric (SSD), in
order to compare descriptors across the two images.

This article extends our earlier work (Heinrich et al., 2011) by
using a more principled derivation of this image descriptor, thus
making it more robust to changes in local noise and contrast and
therefore allowing for the use of the L2 norm to compare descrip-
tors across modalities. We also present a more thorough evaluation
including quantitative comparisons to more recent multi-modal
similarity metrics.

This paper is structured as follows: Section 2 presents an over-
view of related work in deformable multi-modal registration, as
well as examples of the use of image self-similarity in literature.
This includes a brief review of two recent techniques: conditional
mutual information and entropy images, against which the pro-
posed technique will be compared. Section 3 describes the formu-
lation and implementation of MIND, demonstrating its sensitivity
to different types of image features, such as corner points, edges
and homogenous areas, and their local orientation. Details of its
efficient implementation are presented, which greatly reduces
the computational complexity by using convolution filters. The ri-
gid and deformable registration framework used in the experi-
ments, which is based on a multi-resolution Gauss–Newton
optimisation, is presented in Section 4. Section 5 shows an evalua-
tion of the robustness and accuracy of the presented method, first
for the task of landmark detection in multi-modal 3D datasets un-
der the influence of intensity distortions, then for deformable reg-
istration of CT lung scans, and finally on the clinical application of
the alignment of volumetric CT and MRI scans of patients suffering
from the lung disease empyema. The method’s performance is
quantitatively evaluated using gold standard landmarks localised
by a clinical radiologist. Finally, the results are discussed and fu-
ture research directions are given.
2. Background

2.1. Mutual information

Mutual information (MI) is derived from information theory
and measures the statistical dependency of two random variables.
It was first introduced to medical image registration for the rigid
alignment of multi-modal scans by Maes et al. (1997) and Viola
and Wells (1997), and later used successfully in a variety of appli-
cations, including deformable registration (Rueckert et al., 1999;
Meyer et al., 1997). Studholme et al. (1999) introduced normalised
mutual information (NMI) to cope with the effect of changing im-
age overlap on MI. It is based on the assumption that a lower en-
tropy of the joint intensity distribution corresponds to a better
alignment.

An important disadvantage of mutual information for image
registration is that it ignores the spatial neighbourhood of a par-
ticular voxel within one image and consequently, it does not use
the spatial information shared across images. In the presence of
image intensity distortions, such as a non-stationary bias field
in an MRI scan, this can deteriorate the quality of the alignment,
especially in the case of non-rigid registration where the geomet-
ric constraints of the transformation are relaxed compared to ri-
gid body alignment. One approach to overcome this problem is
to include spatial information into the joint and marginal histo-
gram computation. In Rueckert et al. (2000), a second-order mu-
tual information measure is defined, which extends the joint
entropy estimation to the spatial neighbours of a voxel and there-
fore uses a 4D histogram, where the third and forth dimensions
define the probability of the spatial neighbours of a voxel to have
a certain intensity. A problem that arises here is the curse of
dimensionality, meaning that a lot of samples are needed to pop-
ulate the higher-dimensional histogram. The authors therefore
limit the number of intensity bins to 16, which might again de-
crease the accuracy. Three more recent approaches of MI includ-
ing spatial context can be found in (Yi and Soatto, 2011; Heinrich
et al., 2012; Zhuang et al., 2011).
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Fig. 1. Proposed concept for the use of MIND for multimodal registration. MIND is calculated in a dense manner in CT and MRI. Three exemplary locations with different
image features: homogenous intensities (liver), corner points at one vertebra and image gradients at the boundary between fat and non-fat tissue are shown. The
corresponding descriptors (in coloured boxes, high intensities correspond to small patch distances) are independent of the respective modality and can be easily compared
using the L2 norm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.1.1. Pointwise normalised mutual information
In Hermosillo et al. (2002) and Rogelj et al. (2003), variants of

mutual information to obtain a pointwise similarity metric have
been proposed. For the implementation of NMI as comparison
method, the approach of (Rogelj et al., 2003) is used in this work.
The joint and marginal histograms p of two images I and J are ob-
tained in a conventional manner by summing up the contribution
of all intensity pairs to one global histogram. The local contribution
NMI (x) for each voxel can then be obtained using:

NMIðxÞ ¼ log
pðIðxÞ; JðxÞÞ

pðIðxÞÞpðJðxÞÞ

� �
1P

XpðIðxÞÞ log pðIðxÞÞ ð1Þ

Alternatively, a local joint histogram estimation could be used,
which however would limit the number of samples and would re-
quire more sophisticated histogram strategies like non-parametric
windows (Dowson et al., 2008), which are computationally extre-
mely demanding for 3D volumes. A simplified computation for this
technique was recently presented by Joshi et al. (2011).

2.1.2. Conditional mutual information
A number of disadvantages of using the traditional global MI

approach have been analysed by Loeckx et al. (2010), Haber and
Modersitzki (2006), and Studholme et al., 2006. These lie mainly
in the sensitivity of MI (or NMI) to non-uniform bias fields in
MRI. These can be often explained by the lack of spatial informa-
tion in the joint histogram calculation. Different approaches have
been proposed to include spatial context into MI as mentioned
aboved. Studholme et al. (2006) introduce a third channel to the
joint histogram containing a spatial or regional label. In this work,
the recent approach called conditional mutual information (CMI),
as introduced by Loeckx et al. (2010) is used for comparison pur-
poses. In this technique, a third dimension is added to the joint his-
togram and a second dimension is added to the marginals
representing the regional location of an intensity pair. The image
is subdivided into a number of overlapping regions and each inten-
sity pair only contributes to its specific regional histograms. A
number of anchor points are evenly distributed on the image grid.
Each voxel in a 3D volume is then attributed to its 8 nearest anchor
points, and its contribution to this regional label r(x) is weighted
by the reciprocal spatial distance w(I(x),J(x),x) to it. CMI is then de-
fined as:
CMIðxÞ ¼ �
X
x2X

wðIðxÞ; JðxÞ; rðxÞÞ log
pðIðxÞ; JðxÞÞ

pðIðxÞÞpðJðxÞÞ

� �
ð2Þ

In Loeckx et al. (2010), it was shown that this reduces the negative
influence of bias fields and yields a higher registration accuracy for
a small number of realistic test cases. The drawbacks lie again in the
difficulty of populating this 3D histogram, and in the fact that cor-
responding anatomical structures, which are spatially further apart,
are ignored.
2.2. Structural representation

A very different approach to multi-modal image registration is
the use of a structural representation, which is assumed to be inde-
pendent of a certain modality. One can then use a simple intensity-
based measure across image representations. Using image gradi-
ents directly would be not representative across modalities, but
the use of the local gradient orientation is possible and has been
used in Pluim et al. (2000) for rigid registration and in Haber and
Modersitzki (2006), Heinrich et al. (2010) and De Nigris et al.
(2010) for deformable registration. In Mellor and Brady (2005),
the local phase of the image was extracted using a technique called
the monogenic signal, and further used for registration. However,
in their work mutual information was used between phase images,
which implies that there was still no direct dependency between
the representations of different modalities. Our approach is differ-
ent in that not a scalar representation, but a vector-valued image
descriptor is derived for each voxel.
2.2.1. Entropy images
Local patch-based entropy images have been proposed by

Wachinger and Navab (2012), which were then minimised using
SSD across modalities, achieving similar registration accuracy as
mutual information for rigid multimodal registration and some
synthetic non-rigid experiments. The basic assumption that drives
the registration based on entropy images is that intensity changes
occur at the same locations in different modalities. An entropy im-
age is produced by firstly calculating histograms of small image
patches. The size p and weighting Cr of the local patches is of great
importance. The entropy value E(x) for each voxel is then obtained
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using a Parzen window smoothing of the histogram from which
the Shannon entropy is calculated.

According to Wachinger and Navab (2012), the number of
intensity bins for non-rigid registration should be sufficiently small
to ensure a well populated local histogram, which however re-
duces the sensitivity to small intensity changes. A problem with
this approach can be a changing level of noise within and across
images – which in turn would influence the entropy calculation.
The high complexity (pd per voxel, where d is the dimension of
the image) of the entropy image calculation could potentially be
reduced using a convolution kernel for the contribution of each
individual voxel to all neighbouring voxels within the size of a
patch.

2.3. Self-similarity

Our approach uses the principle of self-similarity, a concept
which has first been introduced in the domain of image denoising
by Buades et al. (2005). These authors make use of similar image
patches across a noisy image to obtain a noise-free pixel, which
is computed as a weighted average of all other pixels in the image.
The weights w(i, j) used for the averaging are based on the sum of
squared differences between the patch, which surrounds the pixel
of interest, and all other patches in the image. The denoised pixels
NL(i, J) are then calculated using the following equation:

NLði; JÞ ¼
X
j2N

wði; jÞJðjÞ ð3Þ

where N is the neighbourhood of i. The approach demonstrated a
very good performance for image denoising. The use of patches to
measure similarity based on the weights w(i, j) within the same im-
age can easily capture a variety of image features, because it treats
regions, edges, corners and textures in a unified way and is thus
much more meaningful than using single intensities. In subsequent
work, this approach was simplified to search for similar patches
only within a smaller non-local search region (Coupé et al., 2006).
Fig. 1 gives an example of how well the self-similarity pattern can
describe the local structure around an image location. Mainly be-
cause of this property, the concept has been used later on in a vari-
ety of applications. Of particular interest is the application to object
localisation by Shechtman and Irani (2007). Here, a correlation sur-
face is extracted using colour patch distances and then stored in a
log-polar histogram, which can be matched across images using
the L1 norm.
3. Modality independent neighbourhood descriptor

In this section we will present the modality independent neigh-
bourhood descriptor (MIND) and its use to define the similarity be-
tween two images based on the SSD of their descriptors. First we
motivate the use of image self-similarity for the construction of
an image descriptor. We will then propose the definition of self-
similarity by using a Gaussian-weighted patch-distance and ex-
plain the spatial capture range of the descriptor.

3.1. Motivation and concept

Our aim is to find an image descriptor, which is independent of
the modality, contrast and noise level of images from different
modalities and at the same time sensitive to different types of
image features. Our approach is based on the assumption that a
local representation of image structure, which can be estimated
through the similarity of small image patches within one modality,
is shared across modalities. As mentioned before, many different
features may be used to derive a similarity cost function for image
registration, such as corner points, edges, gradients, textures or
intensity values. Fig. 1 shows some examples on two slices of a
CT and MRI volume.

Most intensity based similarity metrics employ only one of these
features or need to define a specific combination of different features
and a weighting between them. Image patches have been shown to
be sensitive to very different types of image features including
edges, points and texture. Using patches for similarity calculations
also removes the need for a feature specific weighting scheme. How-
ever, they are limited to single-modal images. In our approach, a
multi-dimensional image descriptor, which represents the distinc-
tive image structure in a local neighbourhood, is extracted based
on patch distances for both modalities separately and afterwards
compared using simple single-modal similarity measures.

MIND can be generally defined by a distance Dp, a variance esti-
mate V and a spatial search region R:

MINDðI;x; rÞ ¼ 1
n

exp �DpðI;x;xþ rÞ
VðI;xÞ

� �
r 2 R ð4Þ

where n is a normalisation constant (so that the maximum value is
1) and r 2 R defines the search region. By using MIND, an image will
by represented by a vector of size jRj at each location x.

3.2. Patch-based distance

To evaluate Eq. (4) we need to define a distance measure be-
tween two voxels within the same image. As mentioned before,
image patches offer attractive properties and are sensitive to the
three main image features: points, gradients and uniformly tex-
tured regions. Therefore the straightforward choice of a distance
measure Dp(x1,x2) between two voxels x1 and x2 is the sum of
squared differences (SSD) of all voxels between the two patches
P of size (2p + 1)d (with image dimension d) centred at x1 and x2.

DpðI;x1; x2Þ ¼
X
p2P

ðIðx1 þ pÞ � Iðx2 þ pÞÞ2 ð5Þ

The distance value defined in Eq. (5) has to be calculated for all vox-
els x in the image I and all search positions r 2 R. The naı̈ve solution
(which is e.g. used in Coupé et al., 2006) would require 3(2p + 1)d

operations per voxel and is therefore computationally very
expensive.

We propose an alternative solution to calculate the exact patch-
distance very efficiently using a convolution filter C of size
(2p + 1)d. First a copy of the image I0 is translated by r yielding
I0(r). Then the point-wise squared difference between I and I0(r)
is calculated. Finally, these intermediate values are convolved with
the kernel C, which effectively substitutes the SSD summation in
Eq. (5):

DpðI;x;xþ rÞ ¼ CHðI � I0ðrÞÞ2 ð6Þ

This procedure is now repeated for all search positions r 2 R. The
solution of Eq. (6) is equivalent to the one obtained using Eq. (5).
Using this method it is also easily possible to include a Gaussian
weighting of the patches by using a Gaussian kernel Cr of size
(2p + 1)d. The computational complexity per patch distance calcula-
tion is therefore reduced from (2p + 1)d to d(2p + 1) for an arbitrary
separable kernel and 3d for a uniform patch weighting. A similar
procedure has been proposed in the context of windowed SSD
aggregation by Scharstein and Szeliski (1996).

3.3. Variance measure for Gaussian function

We want to obtain a high response for MIND for patches that
are similar to the patch around the voxel of interest, and a low re-
sponse for everything that is dissimilar. A Gaussian function (see
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Eq. (4)) is used for this purpose. The denominator V(I,x) in Eq. (4) is
an estimation of the local variance. A smaller value for V yields a
sharply decaying function, and higher values indicate a broader re-
sponse. The parameter has to be related to the amount of noise in
the image. The variance of the image noise can be estimated via
pseudo-residuals � calculated using a six-neighbourhood N (see
Coupé et al., 2008):

�i ¼
ffiffiffi
7
6

r
IðxiÞ �

1
6

X
xj2N

IðxjÞ

0
@

1
A ð7Þ

� is averaged over the whole image domain X to obtain a constant
variance measure VðI; xÞ ¼ 1

jXj
P

i2X�
2
i . This however increases the

sensitivity of the image descriptors to spatially varying noise.
Therefore a locally varying function would be beneficial. A better
way of determining V(I,x) is to use the mean of the patch distances
themselves within a six-neighbourhood n 2 N :

VðI;xÞ ¼ 1
6

X
n2N

DpðI;x;xþ nÞ ð8Þ

Using this approach (Eq. (8)), MIND can be automatically calculated
without the need for any additional parameters.

Exemplary responses of the obtained descriptors for three dif-
ferent image features for both CT and MRI are shown in Fig. 1 (sec-
ond and third row on the right), where a high intensity
corresponds to a small patch distance. Fig. 1 demonstrates how
well descriptors represent these features independent of modality.
3.4. Spatial search region

An important issue using MIND is the spatial extent of the
search region (see R in Eq. (4)) for which the descriptor is calcu-
lated. In the original work of Buades et al. (2005), self-similarity
was defined across the whole image domain, thus coining the
term: ‘‘non-local filtering’’. For the use in object detection, Shecht-
man and Irani (2007) used a sparse ensemble of self-similarity
descriptors calculated with a search radius of 40 pixels, which
was stored in a log-polar histogram. For the use of MIND in image
registration, however, a smaller search region is sufficient. This can
be explained by the prior knowledge of smooth deformations,
which are enforced by the regularisation term of most deformable
registration algorithms. We will define three different types of spa-
tial sampling for the spatial search region R: dense sampling,
sparse sampling (rays of 45 degrees), and a six-neighbourhood.
Fig. 2 illustrates these configurations, where the red voxel in the
centre is the voxel of interest, and all gray voxels define R. The
computational complexity is directly proportional to the number
of sampled displacements, therefore the six-neighbourhood clearly
offers the best time efficiency. If the neighbourhood is chosen too
large, the resulting descriptor might be affected by non-rigid
deformations.
Fig. 2. Different samplings of the search region: (a) dense, (b) sparse and (c) six-neighbo
interpretation of the references to colour in this figure legend, the reader is referred to
An evaluation of the influence of both patch-size (and weight-
ing) and search region will be given in Section 5.2.1. A basic MAT-
LAB implementation for the efficient calculation of MIND can be
found in the electronic appendix.
3.5. Multi-modal similarity metric using MIND

One motivation for the use of MIND is that it allows to align
multi-modal images using a simple similarity metric across modal-
ities. Once the descriptors are extracted for both images, yielding a
vector for each voxel, the similarity metric between two images is
defined as the SSD between their corresponding descriptors. There-
fore efficient optimisation algorithms, which converge rapidly can
be used without further modification. We employ Gauss–Newton
optimisation, which minimises the linearised error term in a
least-square sense (Madsen et al., 1999). In order to optimise the
SSD of MIND, the similarity term SðxÞ of two images I and J at voxel
x can be to be defined as the sum of absolute differences between
descriptors:

SðxÞ ¼ 1
jRj
X
r2R

jMINDðI;x; rÞ �MINDðJ;x; rÞj ð9Þ

This requires jRj computations to evaluate the similarity at one vox-
el. Some algorithms, especially discrete optimisation techniques
(Glocker et al., 2008; Shekhovtsov et al., 2008) use many cost func-
tion evaluations per voxel. In order to speed-up these computations
the descriptor can be quantised to only 4 bit, without significant
loss of accuracy. For jRj = 6 all possible distances between descrip-
tors can be pre-computed and stored in a lookup-table.

The similarity S yields an intuitive display of the difference im-
age after registration. Enabling single-modal similarity metrics by
using an intermediate image representation is also the motivation
in Wachinger and Navab (2012); in contrast to our work they re-
duce the alternative image representation to a single scalar value
per voxel.

Our new similarity metric based on the MIND can be used in
any registration algorithm with little need for further modification.
We show in the experimental section that it can improve accuracy
for both rigid and deformable registration of multi-modal data.
4. Gauss–Newton registration framework

This section describes the rigid and deformable registration
framework, which will be used for all similarity metrics that are
being compared in Section 5. We chose to use a Gauss–Newton
optimisation scheme as it has an improved convergence compared
to steepest descent methods (Zikic et al., 2010a). For single-modal
registration using SSD as similarity metric, Gauss–Newton optimi-
sation is equivalent to the well known Horn-Schunck optical flow
solution (Horn and Schunck, 1981) as shown in Zikic et al. (2010b).
urhood. Red voxel is the voxel of interest, gray voxels are being sampled r 2 R. (For
the web version of this article.)



1 The Visible Human dataset is obtainable from http://www.nlm.nih.gov/research/
visible/getting_data.html.
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4.1. Rigid registration

Rigid image registration aims to find the best transformation to
align two images while constraining the deformation to be param-
eterised by a rigid-body (translation and rotation, 6 parameters).
Extending this model to the more general affine transformation,
the transformed location x0 = (x0,y0,z0)T of a voxel x = (x,y,z)T can
be parameterised by q = (q1, . . . ,q12):

u ¼ x0 � x ¼ q1xþ q2yþ q3zþ q10 � x ð10Þ
v ¼ y0 � y ¼ q4xþ q5yþ q6zþ q11 � y

w ¼ z0 � z ¼ q7xþ q8yþ q9zþ q12 � z

where u = (u,v,w)T is the displacement of x. For a quadratic image
similarity function f2, the Gauss–Newton method can be applied.
It uses a linear approximation of the error term:

fðx0Þ � fðxÞ þ JðxÞu ð11Þ
ðJT JÞugn ¼ �JT f

where J(x) is the derivative of the error term with respect to the
transformation and ugn is the update step. We insert Eq. (10) into
Eq. (11) and differentiate with respect to q to calculate J(x). The
advantage of this method is that we can directly use the point-wise
cost function derivatives with respect to u to obtain an affine trans-
formation, so that MIND has to be computed only once per image.

Parameterizing a rigid-body transformation directly is more dif-
ficult. Therefore, at each iteration the best affine matrix is first esti-
mated and then the best rigid-body transformation is found using
the solution presented in Arun et al. (1987). The Gauss–Newton
step is iteratively updated while transforming the source image to-
wards the target. In order to speed up the convergence and avoid
local minima, a multi-resolution scheme (with downsampling fac-
tors of 4 and 2) is used.

4.2. Diffusion-regularised deformable registration

Within the non-rigid registration framework, we aim to mini-
mise the following cost function with respect to the deformation
field u = (u,v,w)T, consisting of a non-linear similarity term S
(dependent on u) and a diffusion regularisation term:

argmin
u

¼
X

x

SðI1ðxÞ; I2ðxþ uÞÞ2 þ atrðruðxÞTruðxÞÞ2 ð12Þ

Since the objective function to be minimised is of the form
P

if
2
i , we

can again apply the Gauss–Newton optimisation method, where f is
minimised iteratively with the update rule: (JTJ)ugn = JTf, where J is
the derivative of f with respect to u. This can be adapted to this reg-
ularised cost function. We simplify the notation to
S ¼ SðI1ðxÞ; I2ðxÞÞ and rS ¼ dS

du ;
dS
dv ;

dS
dw

� �T and Du =r(ru(x)). The
regularisation term is linear with respect to u as the differential
operator is linear. The resulting update step given an initial or pre-
vious deformation field uprev becomes then:

ðrSTrS þ aDÞugn ¼ �ðrSTS þ aDuprevÞ ð13Þ

Eq. (13) is solved using successive over-relaxation (an iterative sol-
ver). The final deformation field is calculated by the addition of the
update steps ugn. The parameter a balances the similarity term with
the regulariser. The value of a has to be found empirically. This
choice will be further discussed in Section 5.2.1.

4.3. Symmetric and inverse-consistent approach

For many deformable registration algorithms, there is a choice
for one image to be the target and the other to be the source image.
This places a bias on the registration outcome and may addition-
ally introduce an inverse consistency error (ICE). The ICE has been
defined by Christensen and Johnson (2001) for a forward transform
A and a backward transform B to be the difference between AB�1

and the identity. In Avants et al. (2008), a symmetric deformable
registration is presented, which calculates a transform from both
images to a common intermediate image and also ensures that
the forward transform is the inverse of the backward transform.
The full forward transform transformation is calculated by
A(0.5) � B(0.5)�1, where 0.5 describes a transformation of half
length (or with half the integration time, if velocity fields are used).
We follow the same approach and estimate both A and B. We then
use a fast iterative inversion method, as presented in Chen et al.
(2007), to obtain A(0.5)�1 and B(0.5)�1. This approach helps to ob-
tain diffeomorphic transformations, which means that no physi-
cally implausible folding of volume occurs. We use this
symmetric approach in all deformable registration experiments.

5. Experiments

In this section we perform a number of challenging registration
experiments to demonstrate the capabilities of MIND in medical
image registration. We compare our new descriptor to state-of-
the-art multi-modal similarity metrics: normalised mutual infor-
mation (NMI), conditional mutual information (CMI), and SSD of
entropy images (eSSD) within the same registration framework.
We evaluate our findings based on the target registration error
(TRE) of anatomical landmarks. The TRE for a given transformation
u and an anatomical landmark pair (x,x0) is defined by (Maurer
et al., 1997):

TRE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ uðxÞ � x0Þ2 þ ðyþ vðxÞ � y0Þ2 þ ðzþwðxÞ � z0Þ2

q
ð14Þ

We first apply the different methods to landmark localisation with-
in an aligned pair of T1 and PD weighted MRI scans of the Visible
Human dataset. We then perform deformable registrations on ten
CT datasets of lung cancer patients, and finally we register CT and
MRI scans of patients with empyema.

5.1. Landmark localisation in visible human dataset

Evaluating multi-modal image registration in a controlled man-
ner is not a trivial task. Finding and accurately marking corre-
sponding anatomical landmarks across modalities is a difficult
task even for a clinical expert. Random deformation experiments,
as they are usually performed in the literature for multi-modal reg-
istration (e.g. in D’Agostino et al., 2003; Glocker et al., 2008; Mellor
and Brady, 2005; Wachinger and Navab, 2012), are mostly unreal-
istic. In order to perform a simulated deformation on multi-modal
data, an aligned scan pair must be available, which is only usually
possible for brain scans. Here the number of different tissue classes
is a lot smaller than for chest scans, thus these experiments do not
generalise very well. Moreover, simulated deformations hardly
ever capture the complexity and physical realism of patient mo-
tion. To address these problems, we perform an alternative exper-
iment: regional landmark localisation. For this purpose, we employ
the less regularly used Visible Human dataset (VHD) (Ackerman,
1998).1 Because the scans were taken post-mortem, no motion is
present and different modalities are consequently in perfect align-
ment. We selected two MRI sequences, T1 and PD weighted volumes,
as they offer a sufficient amount of cross-modality variations. The
images are up-sampled from their original resolution of
1.875 � 4 � 1.875 mm to form isotropic voxels of size 1.875 mm3.

In our tests we automatically select a large number (119) of
geometric landmarks using the 3D version of the Harris corner

http://www.nlm.nih.gov/research/visible/getting_data.html
http://www.nlm.nih.gov/research/visible/getting_data.html


Fig. 3. Visible Human Dataset used for landmark localisation experiment. T1 and PD MRI scan of post-mortem human are intrinsically aligned. The landmarks, which were
used for evaluation are plotted with red squares. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Cumulative distribution of landmark localisation error in mm for 119
landmarks located in the original T1/PD MRI scan of the Visible Human dataset.
MIND achieves a significantly higher localisation accuracy.

2 This dataset is freely available at http://www.dir-lab.com.
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detector (Rohr, 2000). Cross-sections of both sequences are shown
in Fig. 3. For each landmark of the MRI-PD scan, we perform an
exhaustive calculation of the similarity metric within a search win-
dow of 39x39x39 mm of the T1 image around the respective loca-
tion. Since no regularisation is used in this experiment, we average
the cost function over a local neighbourhood with a radius five
voxels. The optimal position (highest similarity) is calculated (up
to subpixel accuracy) and compared to the known ground truth
location. The Euclidean distance serves as localisation error. If the
similarity metric is sufficiently discriminative, no other local opti-
mum should appear within the search region. The distribution of
the resulting error for all compared similarity metrics is shown
in Fig. 4. MIND achieves a significantly lower localisation error
than all other similarity metrics. We subsequently apply a non-
uniform bias field (multiplicative linear gradient in y-direction), a
translation, or additive Gaussian noise to the T1 scan. The fraction
of falsely located landmarks with increasing image distortion is
plotted in Fig. 5. MIND clearly outperforms both NMI and eSSD
by achieving a consistently lower landmark localisation error.
CMI is, as expected, not affected by the non-uniform bias field,
however for an initial misalignment of the scan pair the joint his-
togram estimation becomes less reliable and the localisation accu-
racy deteriorates.
5.2. Deformable registration of inhale and exhale CT scans

We performed deformable registration on ten CT scan pairs be-
tween inhale and exhale phase of the breathing cycle, provided by
the DIR-Lab at the University of Texas (Castillo et al., 2009).2 The
patients were treated for esophagus cancer, and a breathing cycle
CT scan of thorax and upper abdomen was obtained, with slice thick-
ness of 2.5 mm, and an in-plane resolution ranging from 0.97 to
1.16 mm. Even though this stipulates a single-modal registration
problem, directly intensity based similarity criteria such as SSD
may fail in some cases due to the changing appearance between in-
hale and exhale scans. Particular challenges for these registration
tasks are the changing contrast between tissue and air, because
the gas density changes due to compression (Castillo et al., 2010b),
discontinuous sliding motion between lung lobes and the lung rib
cage interface, and large deformations of small features (lung ves-
sels, airways). For each image 300 anatomical landmarks have been
carefully annotated by thoracic imaging experts with inter-observer
errors of less than 1 mm. The maximum average landmark error be-
fore registration is 15 mm (for Case 8), the maximum displacement
of a single landmark is 30 mm.

The cumulative distributions of target registration error (TRE)
for all 3000 landmarks (all 300 landmarks for all 10 cases) after
registration are shown in Fig. 6. MIND achieves the lowest average
and median TRE among all methods. The average error of the sec-
ond best metric (eSSD) is more than a third higher. The Wilcoxon
rank-sum test was used to compare the TRE between the different
similarity metrics across all cases and for each case individually.
We found a significant improvement for MIND compared to all
other metrics. Entropy SSD could significantly improve the
accuracy compared to NMI. A summary of the registration results
is given in Table 1. The range of Jacobian values of the transforma-
tions are all positive, thus all deformation fields are free from

http://www.dir-lab.com
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Fig. 5. Fraction of falsely located landmarks (error > 2 mm) for increasing bias field, initial misalignment (translation), and additive Gaussian noise in multi-modal pair of T1/
PD MRI scan of Visible Human dataset. The resulting localisation deteriorates for NMI and eSSD with increased bias field. NMI, CMI and eSSD have a high localisation error for
initially misaligned volumes. eSSD shows a high sensitivity to Gaussian noise.
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Fig. 6. Deformable registration of 10 cases of CT scans evaluated with 300 expert
landmarks per case. Registrations are performed between maximum inhale and
exhale. The plot shows the cumulative distribution of target registration error, in
mm. A significant improvement using MIND compared to all other methods has
been found using a Wilcoxon rank sum test (p < 0.0001). The staircase effect of TRE
before registration is due to the voxel based landmark annotation.

Table 1
Target registration error in mm for deformable registration of ten CT scans between
inhale and exhale. Evaluation based on 300 manual landmark per case. Inter-observer
error for landmark selection <1 mm. A Wilcoxon rank test is performed between
MIND and each comparison method. Cases, for which a significant improvement
(p < 0.05) was found are depicted below. As additional comparison, the results
reported in the literature for two other techniques are shown below.

Metric TRE (in mm)

Before Mean ± std 8.46 ± 6.58
Quantiles [0.25,0.5,0.75] [3.11,6.97,12.55]
Cases for which p < 0.05 All

SSD Mean ± std 2.73 ± 3.72
Quantiles [0.25,0.5,0.75] [0.89,1.44,2.85]
Cases for which p < 0.05 All except 1, 2

eSSD Mean ± std 2.86 ± 4.91
Quantiles [0.25,0.5,0.75] [0.86,1.33,2.33]
Cases for which p < 0.05 All except 1, 2, 4

NMI Mean ± std 2.97 ± 4.22
Quantiles [0.25,0.5,0.75] [0.91,1.42,2.67]
Cases for which p < 0.05 All except 2

CMI Mean ± std 3.06 ± 4.10
Quantiles [0.25,0.5,0.75] [1.00,1.59,2.85]
Cases for which p < 0.05 All

MIND Mean ± std 2.14 ± 3.71
Quantiles [0.25,0.5,0.75] [0.77,1.16,1.79]

Results reported in literature TRE (in mm)

Schmidt-Richberg et al. (2012)
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singularities. An example of the registration outcome using our
proposed method along with the magnitude of the deformation
field is shown in Fig. 7.
Direction-dependend 2.13 ± 1.82
Diffusion regularisation 3.02 ± 2.79

Castillo et al. (2010a) 1.35 ± 1.43a

a These results are not directly comparable, as all frames of the 4D CT cycles are
used during registration and more landmarks are evaluated.
5.2.1. Choice of parameters
We used a symmetric three-level multiresolution scheme with-

in the presented Gauss–Newton framework for all compared meth-
ods. The best parameters were carefully chosen based on the TRE
obtained for Case 5. An overview is given in Table A.4 in the elec-
tronic appendix. The regularisation was chosen sufficiently high to
ensure physically plausible transformations with no singularities
(negative Jacobians). For CMI the spatial size of each regional label
was set to be between 253 and 503 voxels, as suggested in Loeckx
et al. (2010). The computation time for each 3D registration was
between 4 and 5 min for all methods (see Table 2). The influence
of the choice of patch-size and search region for MIND has been
evaluated using both single-modal and multi-modal registration
tasks. Fig. 8 gives an overview of the obtained TRE. It can be gener-
ally seen that a Gaussian weighting r � 0.5 (with a corresponding
patch-size of 3 � 3 � 3) as well as a very small search region (six-
neighbourhood yield a very high accuracy). For other applications
with stronger image distortion and noise (e.g. ultrasound), we ex-
pect that larger patches and search regions would provide more
robustness.
5.3. Multi-modal registration of CT/MRI lung scans

Deformable multi-modal registration is important for a range of
clinical applications. We applied our proposed technique to a clin-
ical dataset of eleven patients, which were scanned with both CT
and MRI. Different scanning protocols were employed for these
clinical datasets. The CT volumes include scans with contrast, with-
out contrast, and a CTPA (CT Pulmonary Angiogram) protocol. For
the MRI scans, both T1-weighted and T2-weighted FSE-XL se-
quences within a single breath-hold were employed. All patients
suffered from empyema, a lung disease characterised by infection
of the pleura and excess fluid within the pleural space. The extra
fluid may progress into an abscess and additionally, cause the adja-
cent lung to collapse and/or consolidate. Both modalities are useful
for detecting this pathology, but because the patients are scanned
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Fig. 7. Deformable registration result for Case 5 of the CT dataset. Left: axial, middle: sagittal and right: coronal plane. Top row: before registration and centre row: after
registration, using the proposed MIND technique. The target image is displayed in magenta and the source image in green (complementary colour). Bottom row shows the
magnitude of the deformation field (red for large deformations) in mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Computation time (in seconds) for presented methods for Case 5 of CT dataset. For all
metrics the SOR-solver for the Gauss–Newton optimisation takes 92 s. The image
dimensions are 256 � 256 � 106.

Metric Preprocessing
(For each GN iteration)

Similarity term Full registration

eSSD 33.38 2.25 283.5
NMI 0.74 6.82 261.4
CMI 4.23 49.84 383.5
MIND 20.25 9.78 320.4
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in two different sessions and at different levels of breath-hold,
there are non-rigid deformations, which makes it difficult for the
clinician to relate the scans. The quality of the MRI scans is com-
paratively poor, due to motion artefacts, bias fields and a slice
thickness of around 8 mm.

We asked a clinical expert to select manual landmarks for all
eleven cases. 12 corresponding landmarks were selected in all im-
age pairs, containing both normal anatomical locations and dis-
ease-specific places. It must be noted that some of the landmarks
are very challenging to locate, both due to low scan quality and
changes of the pathology in the diseased areas between scans.
The intra-observer error has been measured to be 5.8 mm within
the MRI and 3.0 mm within a CT scan.

First a rigid registration of all cases using the proposed Gauss–
Newton framework with the respective similarity metrics is per-
formed. The resulting landmark errors are shown in Fig. 9. MIND
achieves a lower TRE of 9.3 mm, on average, compared to NMI
(10.8 mm). We additionally calculated the optimal rigid body
transformation using a least square fit of the ground truth land-
mark locations. We were not able to use entropy images for this
multi-modal experiment as the structural representation is not
sufficient to allow for the large variations in appearance and distor-
tion between the CT and MRI scans and the registration fails for
most cases (increased landmark error compared to ground truth
after registration).

We use the rigid transformations obtained from the linear reg-
istration as initialisation of the subsequent deformable registra-
tion. For eSSD, the rigid transformations obtained using MIND,
are employed as initialisation. The parameter choice for all com-
pared methods can be found in Table A.5 in the electronic
appendix.

The obtained average TRE is 7.1 mm for MIND, 8.8 mm for CMI,
9.2 mm for NMI and 10.5 mm for eSSD. Even though the error for
MIND is higher than what can be expected for a CT-to-CT



Fig. 8. Parameter variation for MIND to determine the best choice of (a) r in patch-distance Dp and (b) the spatial search region R. The TRE is evaluated for one single-modal
(3D CT) case (left y-axis) and one multi-modal (3D MRI/CT) registration (right y-axis). Based on these tests, we choose r = 0.5 and a six-neighbourhood for all experiments.
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Fig. 9. Rigid multi-modal registration of 11 cases of CT/MRI scans of empyema
patients. Evaluated with 12 expert landmarks per case. The plot shows the
cumulative distribution of target registration error, in mm. The manual registration
error shows the residual error after a least square fit using a rigid transformation
model to the ground truth landmark locations. MIND achieves an overall better
performance than NMI.
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Fig. 10. Deformable multi-modal registration of 11 cases of CT/MRI scans of
empyema patients, evaluated with 12 expert landmarks per case. The plot shows
the cumulative distribution of target registration error, in mm. MIND achieves a
statistically significant (p < 0.023) better result than all other methods. The
comparatively high residual error is due to both low scan quality, (in-plane
resolution is �1 mm, but the slice thickness up to 8 mm) and the challenging
landmark selection for the clinical expert (intraobserver error is 5.8 mm).

Table 3
Target registration error in mm for deformable registration of eleven CT/MRI scan
pairs of empyema patients. Evaluation based on 12 manual landmarks per case. Slice
thickness of MRI scans is 8 mm (in-plane resolution �1 mm), intra-observer error for
landmark localisation is 5.8 mm in MRI scans. A Wilcoxon rank test has been
performed between presented methods. Significant improvements using MIND are
found compared any other method (using all 132 landmarks).

Metric TRE (in mm)

Before Mean ± std 13.49 ± 10.53
Quantiles [0.25,0.5,0.75] [6.00,11.18,17.63]
p-value <10�6

eSSD Mean ± std 10.49 ± 6.78
Quantiles [0.25,0.5,0.75] [5.43,9.34,13.79]
p-value <10�5

NMI Mean ± std 9.18 ± 7.40
Quantiles [0.25,0.5,0.75] [4.06,6.91,11.84]
p-value <0.019

CMI Mean ± std 8.79 ± 6.51
Quantiles [0.25,0.5,0.75] [3.84,7.01,11.87]
p-value <0.023

MIND Mean ± std 7.12 ± 5.88
Quantiles [0.25,0.5,0.75] [3.33,5.68,9.10]
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registration, it is lower than the spatial resolution of the MRI scans
and close to the intra-observer error. The distribution of landmark
errors is shown in Fig. 10. Using a Wilcoxon rank test, a statistically
significant improvement of MIND compared to NMI (p = 0.019) and
CMI (p = 0.023) was found. An overview of the registration results
is given in Table 3. The Jacobian values are all positive, thus no
transformations contained any singularities. An example registra-
tion outcome for MIND and NMI is shown in Fig. 11.

6. Discussion and conclusion

We have presented a novel modality independent neighbour-
hood descriptor (MIND) for volumetric medical image registration.
The descriptor can be efficiently computed locally across the whole
image, and it allows for accurate and reliable alignment in a variety
of registration tasks. Compared to mutual information it does not
rely on the assumption of a global (or regional) intensity relation.
The negative influence of initial misalignment and non-uniform
bias fields is massively reduced and the difficult task of setting
the correct parameters for the histogram calculation can be
avoided. Apart from the regularisation parameter, a standard set-
ting can be used for all registration tasks. The descriptor is not
rotationally invariant, which might be a limitation in the case of



(a) CT scan of empyema patient with 4 relevant contour plots to guide the visualisation of registration results.

(b) MRI scan with identical CT contour plots before registration.

(c) Identical MRI scan with CT contour plots deformed according to non-rigid registration using NMI. The white arrows depict inaccurate registration
close to one vertebrae, the inner lung boundary and gas pocket in empyema.

(d) Identical MRI scan with CT contour plots deformed according to non-rigid registration using MIND. A visually better alignment could be achieved.

Fig. 11. Deformable CT/MRI registration results for Case 11 of empyema dataset. Left: axial, middle: sagittal and right: coronal plane. The third row shows the registration
outcome using NMI. A better alignment is obtained when using MIND (forth row).
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strong rotations. However, the sensitivity of MIND to the local ori-
entation may in fact lead to improved accuracy as suggested by the
previous work of Pluim et al. (2000) and Haber and Modersitzki
(2006). The modality independent representation using a vector
based on the local neighbourhood (which allows it to capture ori-
entation) instead of a scalar value (used in entropy images) shows
clear improvements for real multi-modal registration experiments.
The implementation is straightforward, the running time compara-
ble to other methods, and an important advantage of MIND is that
it is calculated point-wise and can therefore be adapted to almost
any registration algorithm.

We performed an extensive evaluation of our proposed method
and three state-of-the-art multi-modal similarity metrics: entropy
images, normalised and conditional mutual information. Tables 1
and 3 summarise the deformable registration results on two
very challenging datasets. The results clearly demonstrate the
advantages of the proposed descriptor. MIND achieves a higher
accuracy and more robust correspondences for the CT dataset.
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The application of deformable registration to multi-modal medical
images has so far remained a less sophisticated and advanced field
with very few published results on clinically relevant data. Our
proposed descriptor marks a novel contribution to this area. We
verified its robustness to noise, field inhomogeneities and complex
intensity relations in two experiments. First, the localisation of
geometric landmarks was tested in an intrinsically aligned T1/PD
MRI scan pair of the Visible Human dataset. Here the high discrim-
ination and independency of bias fields has been demonstrated.
Secondly for the deformable registration of clinical CT and MRI
scans, we found a significant improvement over all other tested
metrics.

While our validation was focused on CT and MRI modalities, we
believe that our approach generalises well and further use could be
made of this concept in a variety of medical image registration
tasks. The application of MIND to other multi-modal registration
tasks, such as registration of PET, contrast enhanced MRI and ultra-
sound, also to other anatomical regions, is subject for future work.
A limitation of our approach is that it requires an anatomical fea-
ture to be present in both modalities, if this assumption is violated
the concept of mutual-saliency (Ou et al., 2011) could be incorpo-
rated to improve the robustness in these cases.

Further improvements might be possible. The use of more
sophisticated deformation models could address application-
specific challenges, such as slipping organ motion (Schmidt-
Richberg et al., 2012) and bladder filling or bowel gases (Foskey
et al., 2005). Employing a different optimisation scheme such as
a registration based on MRF labelling (Glocker et al., 2011), may
allow us to find better maxima in the similarity function. In future
work we will investigate the potential advantages of incorporating
MIND into a discrete optimisation technique.
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